Software design is the process of envisioning and defining software solutions to one or more sets of problems. One of the main components of software design is the software requirements analysis (SRA). SRA is a part of the software development process that lists specifications used in software engineering. If the software is "semi-automated" or user centered, software design may involve user experience design yielding a storyboard to help determine those specifications. If the software is completely automated (meaning no user or user interface), a software design may be as simple as a flow chart or text describing a planned sequence of events. There are also semi-standard methods like Unified Modeling Language and Fundamental modeling concepts. In either case, some documentation of the plan is usually the product of the design. Furthermore, a software design may be platform-independent or platform-specific, depending upon the availability of the technology used for the design.
The main difference between software analysis and design is engineering vs computer science that the output of a software analysis consists of smaller problems to solve. Additionally, the analysis should not be designed very differently across different team members or groups. In contrast, the design focuses on capabilities, and thus multiple designs for the same problem can and will exist. Depending on the environment, the design often varies, whether it is created from reliable frameworks or implemented with suitable design patterns. Design examples include operation systems, webpages, mobile devices or even the new cloud computing paradigm.
Software design is both a process and a model. The design process is a sequence of steps that enables the designer to describe all aspects of the software for building. Creative skill, past experience, a sense of what makes "good" software, and an overall commitment to quality are examples of critical success factors for a competent design. It is important to note, however, that the design process is not always a straightforward procedure; the design model can be compared to an architect's plans for a house. It begins by representing the totality of the thing that is to be built (e.g., a three-dimensional rendering of the house); slowly, the thing is refined to provide guidance for constructing each detail (e.g., the plumbing lay). Similarly, the design model that is created for software provides a variety of different views of the computer software. Basic design principles enable the software engineer to navigate the design process. Davis[3] suggests a set of principles for software design, which have been adapted and extended in the following list:
The design process should not suffer from "tunnel vision." A good designer should consider alternative approaches, judging each based on the requirements of the problem, the resources available to do the job.
The design should be traceable to the analysis model. Because a single element of the design model can often be traced back to multiple requirements, it is necessary to have a means for tracking how requirements have been satisfied by the design model.
The design should not reinvent the wheel. Systems are constructed using a set of design patterns, many of which have likely been encountered before. These patterns should always be chosen as an alternative to reinvention. Time is short and resources are limited; design time should be invested in representing (truly new) ideas by integrating patterns that already exist (when applicable).
The design should "minimize the intellectual distance" between the software and the problem as it exists in the real world. That is, the structure of the software design should, whenever possible, mimic the structure of the problem domain.
The design should exhibit uniformity and integration. A design is uniform if it appears fully coherent. In order to achieve this outcome, rules of style and format should be defined for a design team before design work begins. A design is integrated if care is taken in defining interfaces between design components.
The design should be structured to accommodate change. The design concepts discussed in the next section enable a design to achieve this principle.
The design should be structured to degrade gently, even when aberrant data, events, or operating conditions are encountered. Well-designed software should never "bomb"; it should be designed to accommodate unusual circumstances, and if it must terminate processing, it should do so in a graceful manner.